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In this article, we propose a Flexure-FET (flexure sensitive field
effect transistor) ultrasensitive biosensor that utilizes the nonlinear
electromechanical coupling to overcome the fundamental sensitiv-
ity limits of classical electrical or mechanical nanoscale biosensors.
The stiffness of the suspended gate of Flexure-FET changes with
the capture of the target biomolecules, and the corresponding
change in the gate shape or deflection is reflected in the drain
current of FET. The Flexure-FET is configured to operate such that
the gate is biased near pull-in instability, and the FET-channel
is biased in the subthreshold regime. In this coupled nonlinear
operating mode, the sensitivity (S) of Flexure-FET with respect to
the captured molecule density (Ns) is shown to be exponentially
higher than that of any other electrical or mechanical biosensor.

In other words, while SFlexure ∼ eðγ1
ffiffiffiffi
Ns

p
−γ2NsÞ, classical electrical or

mechanical biosensors are limited to Sclassical ∼ γ3NS or γ4 lnðNSÞ,
where γi are sensor-specific constants. In addition, the proposed
sensor can detect both charged and charge-neutral biomolecules,
without requiring a reference electrode or any sophisticated instru-
mentation, making it a potential candidate for various low-cost,
point-of-care applications.

label-free detection ∣ genome sequencing ∣ cantilever ∣ spring-softening ∣
critical-point sensors

Nanoscale biosensors are widely regarded as a potential can-
didate for ultrasensitive, label-free detection of biochemical

molecules. Among the various technologies, significant research
have focused on developing ultrasensitive nanoscale electrical (1)
and mechanical (2) biosensors. Despite remarkable progress over
the last decade, these technologies have fundamental challenges
that limit opportunities for further improvement in their sensitiv-
ity (Fig. 1A) (3–6). For example, the sensitivity of electrical
nanobiosensors such as Si-Nanowire (NW) FET (field effect
transistor) (Fig. 1B) is severely suppressed by the electrostatic
screening due to the presence of other ions/charged biomolecules
in the solution (7), which limits its sensitivity to vary linearly (in
subthreshold regime) (3, 7) or logarithmically (in accumulation
regime) (4, 7, 8, 9) with respect to the captured molecule density
Ns. Moreover, the miniaturization and stability of the reference
electrode have been a persistent problem, especially for lab-on-
chip applications (1). Finally, it is difficult to detect charge-neu-
tral biological entities such as viruses or proteins using charge-
based electrical nanobiosensor schemes.

In contrast, nanomechanical biosensors like nanocantilevers
(10, 11) (Fig. 1C) do not require biomolecules to be charged for
detection. Here, the capture of target molecules on the cantilever
surface modulates its mass, stiffness, and/or surface stress (5, 11,
12). This change in the mechanical properties of the cantilever
can then be observed as a change in its resonance frequency (dy-
namic mode), mechanical deflection, or change in the resistance
of a piezoresistive material (static mode) attached to the canti-
lever (6, 13). Unfortunately, typical optical detection schemes
(10) require complex instrumentation which may preclude them
from many low-cost point-of-care applications. Further, the re-

sponse of nanomechanical biosensors varies only linearly (5)
or logarithmically (6, 14, 15) with the change in the mass or sur-
face stress of the cantilever, and therefore these sensors may not
be sufficiently sensitive to detect target molecules at very low ana-
lyte concentrations, unless sophisticated, low-noise setup is used.

To overcome the respective limitations of classical electrical
and mechanical nanoscale biosensors, we propose the concept
of a Flexure-FET biosensor that integrates the key advantages
of both technologies but does not suffer from the limitations
of either approach. The Flexure-FET consists of a nanoplate
channel biased through a thin-film suspended gate (Fig. 1D).
Although the structure is similar to that of a suspended-gate
FET (16), nano-electromechanical (NEM) FET (17), or resonant
gate transistor (18), we call the device Flexure-FET to emphasize
its distinctive nonlinear operation specifically optimized for ultra-
sensitive detection of biomolecules. As shown in Fig. 1E, the ultra
high sensitivity arises from the coupling of two electromechanical
nonlinear responses, namely (i) spring-softening (19) in which
stiffness decreases nonlinearly with the applied gate bias VG and
vanishes at the pull-in point (for detailed discussions on pull-in
instability, see refs. 20, 21), and (ii) subthreshold electrical
conduction (22) in which current depends exponentially on the
surface potential (Fig. S1). Such nonlinear electromechanical
coupling enables exponentially high sensitivity for Flexure-FET
sensors (Fig. 1A), which is fundamentally unachievable by exclu-
sive use of existing nanoscale electrical or mechanical biosensors.
Moreover, the reliance of change in stiffness (23, 24) ensures
screening-free detection of charged/neutral molecules, with no
need for a reference electrode, and the measurement of drain
current for detection requires no complex instrumentation. It
should be noted that from a mechanical perspective, the Flexure-
FET operates close to pull-in instability, a critical point. Similar
critical point sensing has also been reported for vapor sensors
(25) that operate close to bucking-instability (25) and for mass
sensors that operate close to saddle-node bifurcation (26), and
their higher sensitivity has been confirmed experimentally. How-
ever, beyond the critical point sensing, the integrated transistor-
action in the subthreshold regime provides the Flexure-FET an
additional exponential sensitivity (and simpler direct current
readout) that could not be achieved by the classical nonlinear sen-
sor schemes.

Theory of Flexure-FET
Sensor Configuration Before Target Capture.The operating principle
of Flexure-FET can be understood using the well established
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spring-mass model (Fig. 2) (17, 18). With the application of gate
bias VG, the gate moves downward toward the dielectric (y vs.
VG curve in Fig. 1E), and the corresponding increase in gate ca-
pacitance is reflected in the increased drain current IDS, as shown
in Fig. 1E. The static behavior of the device is dictated by the
balance of spring and electrostatic forces; i.e.,

kðy0 − yÞ ¼ 1

2
ϵ0E2

airA; [1]

where k ¼ αEWH 3

12L3 is the stiffness, α is a geometrical factor,E is the
Young’s modulus, W is the width, H is the thickness, L is the
length of the gate electrode, y0 is the air-gap, y is the position
of the gate electrode, ϵ0 is the permittivity of free space, Eair
is the electric field in the air, and A ¼ WL is the area of the gate

electrode. The electric field below the membrane Eair is equal to
ϵsEsðψsÞ, where ϵs is the dielectric constant of the substrate, and

EsðψsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qNA

ϵ0ϵs

s �
ψs þ

�
e−

qψs
kBT − 1

�
kBT
q

−
�

ni
NA

�
2
�
ψs −

�
e

qψs
kBT − 1

�
kBT
q

��1
2

; [2a]

where EsðψsÞ is the electric field at the substrate-dielectric inter-
face (22, page 64, for a detailed derivation of Eq. 2a), ψs is the
surface potential, q is the charge of an electron, NA is the sub-
strate doping, kB is the Boltzmann constant, T is the absolute
temperature, and ni is the intrinsic carrier concentration in the
substrate. The voltage drop in air (yϵsEsðψsÞ), dielectric
(ydϵd ϵsEsðψsÞ), and substrate (ψs) can be related to the applied gate
bias VG as follows-

VG ¼
�
yþ yd

ϵd

�
ϵsEsðψsÞ þ ψs; [2b]

where, yd is the dielectric thickness and ϵd is the dielectric con-
stant. Eqs. 1 and 2 are solved self-consistently for y and ψs at each
VG. The corresponding inversion charge density (Qi) in the chan-
nel and drain current (IDS) are given by

Qi ¼
qn2

i

NA

Z
ψs

0

e
qψ
kBT − 1

EsðψÞ
dψ; [3]

IDS ¼ μnLQi
VDS

W
; [4]

where μn is the channel mobility for electrons, VDS is the applied
drain to source voltage. Fig. 1E shows the steady-state response
of Flexure-FET as a function of biasing voltage VG, obtained
from the numerical simulations of Eqs. 1–4.

Flexure-FET Response to Target Capture. For transduction, the pro-
posed Flexure-FET biosensor utilizes the change in suspended
gate stiffness from k to kþ Δk, (12, 24, 27–29) due to the capture
of biomolecules. The change in stiffness due to the capture of
biomolecules has been demonstrated by several recent experi-
ments of mass sensing using nanocantilever-based resonators
(12, 27, 28) (Fig. S2). This well known observation of stiffness
change has been attributed to the change in the membrane thick-
ness, Young’s modulus, and/or surface stress of the beam (12, 23,

Fig. 1. (A) Sensitivity S of different types of biosensors; e.g., (B) electrical
(Si-NW FET) in which transduction is achieved by modulation of channel con-
ductivity (G) when charged biomolecules are captured by the gate. (C) Trans-
duction in cantilever-based nanomechanical biosensors is achieved by change
in its mass, stiffness, or surface stress. Nanocantilever can be operated in
dynamic mode (mass change-based detection using shift in resonance fre-
quency) or in static mode (surface stress change based detection using piezo-
resistive material). (D) Proposed Flexure-FET biosensor in which transduction
is achieved due to change in the stiffness of the suspended gate. (E) Opera-
tion of Flexure-FET below pull-in. Displacement of the suspended gate (y)
and drain current ðIDSÞ as a function of applied gate bias VG. The y changes
rapidly near pull-in ðVG ≈ VPIÞ and IDS increases exponentially with VG in the
subthreshold regime ðVG < VT Þ.

Fig. 2. (A) and (B). Equivalent spring-mass model of Flexure-FET. Stiffness
changes from k to k þ Δk after the capture of biomolecules, and therefore
position of the gate changes from y to y þ Δy, which results in the modula-
tion of drain current from IDS1 to IDS2.
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24, 30). Indeed, Craighead (27) suggests its use as a basis of a new
class of mechanical biosensor.

In the following analysis, we model change in k by change in
the effective thickness H of the gate (ΔH), although it should
be stressed that the conclusions do not depend on the particular
hypothesis regarding Δk. For now, we ignore the details of the
spatial distribution of molecules associated with random sequen-
tial adsorption (31) and assume a uniform distribution of
adsorbed molecules on the sensor surface. Therefore, the conser-
vation of volume suggests ΔH ¼ NsAtHt, where Ns is the area
density, At is the effective cross-sectional area, and Ht is the
effective thickness of the target molecule. Using the fact that
k ¼ αEWH 3

12L3 , the change in stiffness Δk due to ΔHð≪ HÞ can
be related to adsorbed molecule density Ns as follows:

Δk
k

≈
3NsAtHt

H
: [5]

For simplicity, we have taken the Young’s modulus of captured
molecules to be the same as that of the membrane, but this is ob-
viously not necessary, and the theory can be generalized by the
methods developed in Tamayo, Ramos, Mertens, and Calleja (23).

Combining Eqs. 1 and 2b, we get kðy0 − yÞy2 ≈ ϵ0AðVG−
ψsÞ2∕2. Now, the change in gate position Δy for small change
in stiffness Δk due to capture of biomolecules is given as

ð3y − y0ÞΔy2 þ yð3y − 2y0ÞΔy ≈
ϵ0AðVG − ψsÞ2

2

Δk
k2

: [6]

If Flexure-FET is biased close to pull-in (VG ≈ V PI; y ≈ 2
3
y0), the

nonlinear Δy2 term dominates the linear Δy term in Eq. 6. It is
essential to bias the Flexure-FET in this nonlinear, close-to-pull-
in regime for maximum sensitivity. Using Eqs. 5 and 6, we find

Δy ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0AðVG − ψsÞ2

2ð3y − y0Þ
Δk
k2

s
≈ β

ffiffiffiffiffiffi
Ns

p
; [7]

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ϵ0AðVG−ψsÞ2

2ð3y−y0Þ
AtHt
Hk

q
is a bias and device dependent

constant.
Since the electrostatic force in subthreshold regime is given by

1
2
ϵ0E2

airA ¼ qϵsψsNAA (Eq. 2a), the corresponding change in the
surface potential Δψs is obtained by perturbation of Eq. 1; i.e.,

Δψs ≈
−kΔyþ Δkðy0 − yÞ

qϵsNAA
: [8]

Using Eqs. 2a, 3, and 4, we can calculate the drain current IDS in
the subthreshold regime as follows,

IDS ≈
μnL

�
VDS
W

��
qn2

i
NA

��
kBT
q

�
ffiffiffiffiffiffiffiffiffi
2qNA
ϵ0ϵs

q e
qψs
kBTffiffiffiffiffi
ψs

p : [9]

Now, the ratio of the drain current before (IDS1) and after (IDS2)
capture of biomolecules (in terms of the change in surface poten-
tial Δψs) is given by

IDS1

IDS2
≈ exp

�
−
qΔψs

kBT

�
: [10]

Using Eqs. 8 and 10, the ratio IDS1∕IDS2 is given by

IDS1

IDS2
≈ exp

�
kΔy − Δkðy0 − yÞ

kBTϵsNAA

�
: [11]

Therefore, if Flexure-FET is operated close to pull-in and in sub-
threshold regime, sensitivity S (using Eqs. 5, 7, and 11) is given by

SFlexure ≡
IDS1

IDS2
≈ expðγ1

ffiffiffiffiffiffi
Ns

p
− γ2NsÞ; [12]

where γ1 ¼ kβ
kBTϵsNAA

and γ2 ¼ 3ðy0−yÞkAtHt
kBTϵsNAAH . The sensitivity S is de-

fined as IDS1∕IDS2, because IDS decreases after capture (see next
text section).

Eq. 12 is the key result of the paper and shows how nonlinear
interaction between mechanical (spring-softening) and electrical
(subthreshold) aspects of sensing leads to an exponential sensi-
tivity to capture of biomolecules. Such gain in sensitivity is impos-
sible to achieve exclusively by electrical or mechanical sensing
mechanisms.

Numerical Confirmation of Flexure-FET Response. The compact ana-
lytical expression of sensitivity of the Flexure-FET sensor can be
validated by the self-consistent numerical solution of Eqs. 1–4.
The results for the change in sensor characteristics due to the
capture of biomolecules are summarized in Fig. 3. For example,
Fig. 3A shows y vs. VG before and after capture of target mole-
cules. After the capture, the gate moves up (for a fixed VG) due
to increased restoring spring force (because of increase in the
k; Fig. 3A). Interestingly, change in gate position Δy is maximum
close to pull-in due to spring-softening effect, as shown in Fig. 3B
(see Figs. S3, S4 and S5 in SI Text for experimental validation).
The change in gate position Δy is directly reflected in change in
IDS. Fig. 3C shows IDS vs. VG before and after capture of bio-
molecules. Interestingly, IDS decreases after capture due to in-
creased separation between the gate and the dielectric (hence
decreased capacitance). The corresponding ratio of the currents

Fig. 3. Change in the sensor characteristics due to capture of target mole-
cules on the surface of the gate, (A)y vs. VG before and after capture, and
(B) corresponding change in the position of gate electrode Δy vs. VG. The Δy
increases rapidly near pull-in due to spring-softening effect. The capture of
target molecules is directly mirrored in the change in IDS. (C) IDS vs. VG before
and after capture, and (D) corresponding ratio of the two currents IDS1
(before capture) and IDS2 (after capture) as a function of Δy. Symbols denote
the numerical simulation and solid line analytical formula (Eq. 11). The device
considered has the following typical parameters: L ¼ 4 μm, W ¼ 1 μm,
H ¼ 40 nm, E ¼ 200 GPa, y0 ¼ 100 nm, yd ¼ 5 nm, ϵs ¼ 11.7, ϵd ¼ 3.9,
NA ¼ 6e16 cm−3.
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IDS1 (before capture) and IDS2 (after capture) increases exponen-
tially withΔy (Fig. 3D), and becomes maximum near pull-in. Note
that the results from detailed numerical simulations are accu-
rately anticipated by Eq. 11, thus validating the analytical model
described in the previous section. Therefore, by operating the
Flexure-FET close to mechanical pull-in and in electrical sub-
threshold regime, orders of magnitude change in IDS can be easily
achieved for typical surface density of Ns ¼ 5 × 1012 cm−2, pro-
jected area of the biomolecule, At ¼ πR2

t with Rt ¼ 1 nm, and
Ht ¼ 5.1 nm. These parameters translate to just an equivalent
Δk ∼ 6%. Note that to achieve the maximum sensitivity, it is im-
portant to bias the Flexure-FET in subthreshold regime below
pull-in (i.e., VT ≈ V PI).

Comparison with Classical Sensors
Next we compare the sensitivity of the proposed Flexure-FET
sensor with the current nanoscale electrical/mechanical biosen-
sors. Fig. 4A indicates that the Flexure-FETsensors are exponen-
tially sensitive to change in stiffness or captured molecule density
Ns (symbols: numerical simulation, solid line: analytical result;
Eq. 12). In the following, we explain the origin of linear (or loga-
rithmic) sensitivity for electrical and mechanical nanoscale bio-
sensors.

Electrical Nanobiosensors. For Si-NW FET biosensors, which also
have the optimal sensitivity in subthreshold regime (3), sensitivity
S is defined to be the ratio of conductance G (after) and G0

(before) capture of target molecules (assuming conductance
increases after the capture). Therefore, using Eq. 9, S can be
approximated as

SSiNW ≡
G
G0

≈ exp
�
qΔψs

kBT

�
: [13]

Unfortunately, the detection of biomolecules in a fluidic environ-
ment involves electrostatic screening by other ions in the solution.

Consequently, the surface potential scales logarithmically with
biomolecule density; i.e., (q∕kBT)Δψs ∝ lnðδNsÞ (7) , where δ
is a constant that depends on ionic strength and properties of
dielectric/fluid interface. Therefore, optimal sensitivity of Si-NW
biosensors is given by

SSiNW ∝ δNs: [14]

In Fig. 4B, S is plotted against volume concentration ρ, as the
captured molecule density Ns ∝ ρ [linear regime of Langmuir
isotherm (7)]. Therefore, all the conclusions regarding the depen-
dence of sensitivity on Ns also hold for ρ. It should be noted that
the reported sensitivity in the subthreshold regime (3) is actually
sublinear (Fig. 4B), below the maximum sensitivity limit defined
by Eq. 14 that can be achieved in this sensing regime. In the
accumulation or the inversion regimes, SSiNW ∝ Δψs (7), and
therefore, SSiNW ∝ lnðNsÞ, as shown in Fig. 4B (4, 7). Similar
logarithmic dependence of sensitivity was reported in other refer-
ences (8, 9) as well.

Mechanical Nanobiosensors. For nanomechanical biosensors such
as resonance mode nanocantilever, the sensitivity S is defined
as ω0∕ω, where ω is the resonance frequency after the capture
of target biomolecules, and ω0 is the resonance frequency before

capture. Using the well known fact that ω ¼
ffiffiffi
k
m

q
, where k is the

stiffness and m is the initial mass of the cantilever, S is given by

SRes ≡
ω0

ω
≈ 1þ 1

2

Δm
m

¼ 1þ 1

2

NsWLm�

m
; [15]

where m� is the mass of individual biomolecule and
Δm ¼ NsWLm� is the added mass of the biomolecules. There-
fore, the sensitivity of mechanical biosensor can only vary linearly
withNs. This theoretical prediction is confirmed by experimental
data (5) in Fig. 4C. We emphasize that the nanomechanical bio-
sensors—with careful design and appropriate instrumentation—
can be extraordinarily sensitive; indeed, zeptogram mass detec-
tion (32) has been reported. Eq. 15 simply suggests that the sen-
sitivity of such sensor still varies linearly with respect to Ns.

It is also important to realize that the linear sensitivity with Ns
is achieved only if the change in stiffness due to capture of
molecules is negligible. In general, however, capture of target
molecules increases stiffness of the membrane. If this increase
in stiffness compensates the corresponding increase in the mass,
there might be no change in resonance frequency at all (12, 28),
and the sensitivity could be vanishingly small. One must indepen-
dently measure the change in the stiffness (29, 30) to decouple
the mass effect from stiffness effect so that the mass of the
adsorbed molecule can be correctly estimated. In contrast, the
Flexure-FET relies only on the change in the stiffness and works
in the static mode, and therefore requires no more than a simple
measurement of the drain current.

Another class of nanocantilever sensor involves operation in
the static mode, where the capture of the target molecules intro-
duces a surface stress, which in turn bends the cantilever. The
displacement Δy of the tip can in principle be measured using
sophisticated optical readout methods, but a simpler approach
can be used instead: One can measure the change in surface stress
by measuring the change in the resistance of a piezoresistor
attached to the cantilever. For these piezoresistive-based cantile-
ver biosensors, the sensitivity is defined as the ratio of resistance
before (R0) and after (R) the capture of biomolecules. Fig. 4D
shows a logarithmic dependence of S on ρ. Similar logarithmic
dependence for surface stress change has also been reported
(14, 15). We therefore conclude that these static mode sensors
do not exceed linear sensitivity limit of classical sensors.

Fig. 4. Comparison of the sensitivity of different biosensors. Sensitivity S (A)
Flexure-FET (symbols denote the numerical simulation). (B) Si-NW biosensors
in subthreshold and accumulation regime. (C) Resonance mode nanomecha-
nical biosensors. (D) Surface stress change-based piezoresistive nanomecha-
nical biosensors, as a function of Ns or ρ. In (B–D), symbols are the
experimental data and the line is the guide to the eye.
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We summarize the results discussed in this section in Fig. 1A,
where the sensitivity of various types of nanobiosensors has been
plotted against normalized Ns, defined as the ratio of the mea-
sured quantity (either ρ or Ns) to the minimum measured ρ or
Ns of the available data. Fig. 1A allows us to conclude that the
Flexure-FET biosensor will be exponentially more sensitive com-
pared to existing nanoscale electrical or mechanical biosensors.

Finally, we emphasize that each of the three sequential physi-
cal phenomena associated with the operation of Flexure-FET
(stiffness change due to capture of biomolecules, pull-in instabil-
ity, subthreshold conduction) (Fig. S1) has been individually con-
firmed by numerous experiments based on electromechanical
resonators (18, 33) and suspended-gate FET (34). We provide
a summary of these experiments in the SI Text (Figs. S2, S4, S5,
and S6). In the SI Text, we also suggest that a simple reconfigura-
tion of existing electromechanical resonators or suspended-gate
FET in Flexure-FET mode can give rise to exponential sensitivity
(Fig. S7).

Conclusion
In this paper, we have demonstrated how the Flexure-FET nano-
biosensor achieves exponentially high sensitivity by combining
two nonlinear characteristics of spring-softening and subthres-
hold conduction. This extreme high sensitivity of Flexure-FET,
therefore, breaks the fundamental limits of linear or logarithmic
sensitivity of classical nanoscale electrical or mechanical biosen-

sors. There are broad ranges of applications that can benefit from
this sensitivity gain. For example, the current genome sequencing
schemes require PCR (polymerase chain reaction) amplification
of DNA strands because of the lower sensitivity of existing
biosensors. The high sensitivity of Flexure-FETcan eliminate the
requirement of multiplication step and hence reduce the cost of
sequencing. In addition, we recall that the proposed sensing
scheme (i) can detect both charged and charge-neutral molecules,
(ii) does not rely on reference electrode (the fundamental road-
block of Si-NW type biosensors), and (iii) obviates the need for
any sophisticated and difficult-to-integrate instrumentation. The
sensitivity of Flexure-FETcan be further enhanced by choosing a
softer membrane (having low stiffness) such as some polymer with
low Young’s modulus or an ultrathin membrane like graphene.
Finally, let us emphasize that the sensing scheme is very general,
which converts any change in the mechanical property of the gate
electrode or change in the air-gap to the change in the drain cur-
rent of the FETchannel. Therefore, the proposed idea is not ne-
cessarily restricted to biomolecules detection but should find
broader applications in gas/chemical/pressure sensing as well.
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